3.1.31 \(\int \frac {A+C \cos ^2(c+d x)}{\sqrt {b \sec (c+d x)}} \, dx\) [31]

Optimal. Leaf size=77 \[ \frac {2 (5 A+3 C) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{5 d \sqrt {\cos (c+d x)} \sqrt {b \sec (c+d x)}}+\frac {2 b^2 C \tan (c+d x)}{5 d (b \sec (c+d x))^{5/2}} \]

[Out]

2/5*(5*A+3*C)*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticE(sin(1/2*d*x+1/2*c),2^(1/2))/d/cos(d*x+
c)^(1/2)/(b*sec(d*x+c))^(1/2)+2/5*b^2*C*tan(d*x+c)/d/(b*sec(d*x+c))^(5/2)

________________________________________________________________________________________

Rubi [A]
time = 0.07, antiderivative size = 77, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 4, integrand size = 25, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.160, Rules used = {3317, 4130, 3856, 2719} \begin {gather*} \frac {2 (5 A+3 C) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{5 d \sqrt {\cos (c+d x)} \sqrt {b \sec (c+d x)}}+\frac {2 b^2 C \tan (c+d x)}{5 d (b \sec (c+d x))^{5/2}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(A + C*Cos[c + d*x]^2)/Sqrt[b*Sec[c + d*x]],x]

[Out]

(2*(5*A + 3*C)*EllipticE[(c + d*x)/2, 2])/(5*d*Sqrt[Cos[c + d*x]]*Sqrt[b*Sec[c + d*x]]) + (2*b^2*C*Tan[c + d*x
])/(5*d*(b*Sec[c + d*x])^(5/2))

Rule 2719

Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticE[(1/2)*(c - Pi/2 + d*x), 2], x] /; FreeQ[{
c, d}, x]

Rule 3317

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(m_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]^(n_.))^(p_.), x_Symbol] :> Dist
[d^(n*p), Int[(d*Csc[e + f*x])^(m - n*p)*(b + a*Csc[e + f*x]^n)^p, x], x] /; FreeQ[{a, b, d, e, f, m, n, p}, x
] &&  !IntegerQ[m] && IntegersQ[n, p]

Rule 3856

Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Dist[(b*Csc[c + d*x])^n*Sin[c + d*x]^n, Int[1/Sin[c + d
*x]^n, x], x] /; FreeQ[{b, c, d}, x] && EqQ[n^2, 1/4]

Rule 4130

Int[(csc[(e_.) + (f_.)*(x_)]*(b_.))^(m_.)*(csc[(e_.) + (f_.)*(x_)]^2*(C_.) + (A_)), x_Symbol] :> Simp[A*Cot[e
+ f*x]*((b*Csc[e + f*x])^m/(f*m)), x] + Dist[(C*m + A*(m + 1))/(b^2*m), Int[(b*Csc[e + f*x])^(m + 2), x], x] /
; FreeQ[{b, e, f, A, C}, x] && NeQ[C*m + A*(m + 1), 0] && LeQ[m, -1]

Rubi steps

\begin {align*} \int \frac {A+C \cos ^2(c+d x)}{\sqrt {b \sec (c+d x)}} \, dx &=b^2 \int \frac {C+A \sec ^2(c+d x)}{(b \sec (c+d x))^{5/2}} \, dx\\ &=\frac {2 b^2 C \tan (c+d x)}{5 d (b \sec (c+d x))^{5/2}}+\frac {1}{5} (5 A+3 C) \int \frac {1}{\sqrt {b \sec (c+d x)}} \, dx\\ &=\frac {2 b^2 C \tan (c+d x)}{5 d (b \sec (c+d x))^{5/2}}+\frac {(5 A+3 C) \int \sqrt {\cos (c+d x)} \, dx}{5 \sqrt {\cos (c+d x)} \sqrt {b \sec (c+d x)}}\\ &=\frac {2 (5 A+3 C) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{5 d \sqrt {\cos (c+d x)} \sqrt {b \sec (c+d x)}}+\frac {2 b^2 C \tan (c+d x)}{5 d (b \sec (c+d x))^{5/2}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.26, size = 61, normalized size = 0.79 \begin {gather*} \frac {\frac {4 (5 A+3 C) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{\sqrt {\cos (c+d x)}}+2 C \sin (2 (c+d x))}{10 d \sqrt {b \sec (c+d x)}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(A + C*Cos[c + d*x]^2)/Sqrt[b*Sec[c + d*x]],x]

[Out]

((4*(5*A + 3*C)*EllipticE[(c + d*x)/2, 2])/Sqrt[Cos[c + d*x]] + 2*C*Sin[2*(c + d*x)])/(10*d*Sqrt[b*Sec[c + d*x
]])

________________________________________________________________________________________

Maple [C] Result contains complex when optimal does not.
time = 0.37, size = 609, normalized size = 7.91

method result size
default \(\frac {2 \left (5 i A \cos \left (d x +c \right ) \sin \left (d x +c \right ) \sqrt {\frac {1}{1+\cos \left (d x +c \right )}}\, \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \EllipticF \left (\frac {i \left (-1+\cos \left (d x +c \right )\right )}{\sin \left (d x +c \right )}, i\right )-5 i A \sqrt {\frac {1}{1+\cos \left (d x +c \right )}}\, \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \EllipticE \left (\frac {i \left (-1+\cos \left (d x +c \right )\right )}{\sin \left (d x +c \right )}, i\right ) \cos \left (d x +c \right ) \sin \left (d x +c \right )+3 i C \cos \left (d x +c \right ) \sin \left (d x +c \right ) \sqrt {\frac {1}{1+\cos \left (d x +c \right )}}\, \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \EllipticF \left (\frac {i \left (-1+\cos \left (d x +c \right )\right )}{\sin \left (d x +c \right )}, i\right )-3 i C \sqrt {\frac {1}{1+\cos \left (d x +c \right )}}\, \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \EllipticE \left (\frac {i \left (-1+\cos \left (d x +c \right )\right )}{\sin \left (d x +c \right )}, i\right ) \cos \left (d x +c \right ) \sin \left (d x +c \right )+5 i A \sqrt {\frac {1}{1+\cos \left (d x +c \right )}}\, \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \EllipticF \left (\frac {i \left (-1+\cos \left (d x +c \right )\right )}{\sin \left (d x +c \right )}, i\right ) \sin \left (d x +c \right )-5 i A \sin \left (d x +c \right ) \sqrt {\frac {1}{1+\cos \left (d x +c \right )}}\, \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \EllipticE \left (\frac {i \left (-1+\cos \left (d x +c \right )\right )}{\sin \left (d x +c \right )}, i\right )+3 i C \sin \left (d x +c \right ) \sqrt {\frac {1}{1+\cos \left (d x +c \right )}}\, \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \EllipticF \left (\frac {i \left (-1+\cos \left (d x +c \right )\right )}{\sin \left (d x +c \right )}, i\right )-3 i C \sin \left (d x +c \right ) \sqrt {\frac {1}{1+\cos \left (d x +c \right )}}\, \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \EllipticE \left (\frac {i \left (-1+\cos \left (d x +c \right )\right )}{\sin \left (d x +c \right )}, i\right )-C \left (\cos ^{4}\left (d x +c \right )\right )-5 A \left (\cos ^{2}\left (d x +c \right )\right )-2 C \left (\cos ^{2}\left (d x +c \right )\right )+5 A \cos \left (d x +c \right )+3 C \cos \left (d x +c \right )\right ) \sqrt {\frac {b}{\cos \left (d x +c \right )}}}{5 d \sin \left (d x +c \right ) b}\) \(609\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((A+C*cos(d*x+c)^2)/(b*sec(d*x+c))^(1/2),x,method=_RETURNVERBOSE)

[Out]

2/5/d*(5*I*A*cos(d*x+c)*sin(d*x+c)*(1/(1+cos(d*x+c)))^(1/2)*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*EllipticF(I*(-1+
cos(d*x+c))/sin(d*x+c),I)-5*I*A*(1/(1+cos(d*x+c)))^(1/2)*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*cos(d*x+c)*sin(d*x+
c)*EllipticE(I*(-1+cos(d*x+c))/sin(d*x+c),I)+3*I*C*cos(d*x+c)*sin(d*x+c)*(1/(1+cos(d*x+c)))^(1/2)*(cos(d*x+c)/
(1+cos(d*x+c)))^(1/2)*EllipticF(I*(-1+cos(d*x+c))/sin(d*x+c),I)-3*I*C*(1/(1+cos(d*x+c)))^(1/2)*(cos(d*x+c)/(1+
cos(d*x+c)))^(1/2)*EllipticE(I*(-1+cos(d*x+c))/sin(d*x+c),I)*cos(d*x+c)*sin(d*x+c)+5*I*A*(1/(1+cos(d*x+c)))^(1
/2)*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*EllipticF(I*(-1+cos(d*x+c))/sin(d*x+c),I)*sin(d*x+c)-5*I*A*(1/(1+cos(d*x
+c)))^(1/2)*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*sin(d*x+c)*EllipticE(I*(-1+cos(d*x+c))/sin(d*x+c),I)+3*I*C*sin(d
*x+c)*(1/(1+cos(d*x+c)))^(1/2)*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*EllipticF(I*(-1+cos(d*x+c))/sin(d*x+c),I)-3*I
*C*sin(d*x+c)*(1/(1+cos(d*x+c)))^(1/2)*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*EllipticE(I*(-1+cos(d*x+c))/sin(d*x+c
),I)-C*cos(d*x+c)^4-5*A*cos(d*x+c)^2-2*C*cos(d*x+c)^2+5*A*cos(d*x+c)+3*C*cos(d*x+c))*(b/cos(d*x+c))^(1/2)/sin(
d*x+c)/b

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+C*cos(d*x+c)^2)/(b*sec(d*x+c))^(1/2),x, algorithm="maxima")

[Out]

integrate((C*cos(d*x + c)^2 + A)/sqrt(b*sec(d*x + c)), x)

________________________________________________________________________________________

Fricas [C] Result contains higher order function than in optimal. Order 9 vs. order 4.
time = 0.11, size = 108, normalized size = 1.40 \begin {gather*} \frac {2 \, C \sqrt {\frac {b}{\cos \left (d x + c\right )}} \cos \left (d x + c\right )^{2} \sin \left (d x + c\right ) + \sqrt {2} {\left (5 i \, A + 3 i \, C\right )} \sqrt {b} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right )\right ) + \sqrt {2} {\left (-5 i \, A - 3 i \, C\right )} \sqrt {b} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right )\right )}{5 \, b d} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+C*cos(d*x+c)^2)/(b*sec(d*x+c))^(1/2),x, algorithm="fricas")

[Out]

1/5*(2*C*sqrt(b/cos(d*x + c))*cos(d*x + c)^2*sin(d*x + c) + sqrt(2)*(5*I*A + 3*I*C)*sqrt(b)*weierstrassZeta(-4
, 0, weierstrassPInverse(-4, 0, cos(d*x + c) + I*sin(d*x + c))) + sqrt(2)*(-5*I*A - 3*I*C)*sqrt(b)*weierstrass
Zeta(-4, 0, weierstrassPInverse(-4, 0, cos(d*x + c) - I*sin(d*x + c))))/(b*d)

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {A + C \cos ^{2}{\left (c + d x \right )}}{\sqrt {b \sec {\left (c + d x \right )}}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+C*cos(d*x+c)**2)/(b*sec(d*x+c))**(1/2),x)

[Out]

Integral((A + C*cos(c + d*x)**2)/sqrt(b*sec(c + d*x)), x)

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+C*cos(d*x+c)^2)/(b*sec(d*x+c))^(1/2),x, algorithm="giac")

[Out]

integrate((C*cos(d*x + c)^2 + A)/sqrt(b*sec(d*x + c)), x)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.01 \begin {gather*} \int \frac {C\,{\cos \left (c+d\,x\right )}^2+A}{\sqrt {\frac {b}{\cos \left (c+d\,x\right )}}} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((A + C*cos(c + d*x)^2)/(b/cos(c + d*x))^(1/2),x)

[Out]

int((A + C*cos(c + d*x)^2)/(b/cos(c + d*x))^(1/2), x)

________________________________________________________________________________________